skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lansdorp, Bob_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The index of refraction (n) of particles is an important parameter in optical models that aims to extract particle size and carbon concentrations from light scattering measurements. An inadequate choice ofncan critically affect the characterization and interpretation of optically-derived parameters, including those from satellite-based models which provide the current view of how biogeochemical processes vary over the global ocean. Yet, little is known about hownvaries over time and space to inform such models. Particularly, in situ estimates ofnfor bulk water samples and at diel-resolving time scales are rare. Here, we demonstrate a method to estimatenusing simultaneously and independently collected particulate beam attenuation coefficients, particle size distribution data, and a Mie theory model. We apply this method to surface waters of the North Pacific Subtropical Gyre (NPSG) at hourly resolution. Clear diel cycles innwere observed, marked by minima around local sunrise and maxima around sunset, qualitatively consistent with several laboratory-based estimates ofnfor specific phytoplankton species. A sensitivity analysis showed that the daily oscillation innamplitude was somewhat insensitive to broad variations in method assumptions, ranging from 11.3 ± 4.3% to 16.9 ± 2.9%. Such estimates are crucial for improvement of algorithms that extract the particle size and production from bulk optical measurements, and could potentially help establish a link betweennvariations and changes in cellular composition of in situ particles. 
    more » « less